
Constraints
Examples:

“A string of numbers should represent a permutation”
(1,2,3) is valid; (1,1,3) is not

“The sum of numbers should not be lower than a
threshold”

Possibility 1: fitness function modification
setting fitness of unfeasible solutions to zero

(search may be very inefficient due to unfeasible solutions)
penalty function (negative terms for violated constraints)
barrier function (already penalty if “close to” violation)

Constraints

Possibility 2 (preferred method): special encoding
 GA searches always through allowed solutions
 smaller search space
 ad hoc method, may be difficult to find

Example: permutations (see AI course)

Mutations for Permutations
Insert mutation:

Pick two allele values at random
Move the second to follow the first, shifting the rest

along to accommodate
Note: this preserves most of the order and adjacency

information; changes the position of numbers a lot

Removed Adjancency: (2,3), (4,5), (5,6)
Added Adjacency: (2,5), (4,6), (5,3)
Removed orders: 3->5, 4->5
Added orders: 5->3, 5->4
Changed positions: 3, 4, 5

Mutations for Permutations
Swap mutation:

Pick two alleles at random and swap their positions
Disrupts adjacency information and order more;

preserves positions

Removed Adjancency: (1,2), (2,3), (4,5), (5,6)
Added Adjacency: (1,5), (2,6), (4,2), (5,3)
Removed order: 2->3, 2->4, 2->5, 3->5, 4->5
Added order: 5->3, 5->4, 3->2, 4->2, 5->2
Changed positions: 2, 5

Mutations for Permutations
Inversion mutation:

Pick two alleles at random and then invert the substring
between them.

Preserves most adjacency information (only breaks two
links) but disruptive for order information

Mutations for Permutations
Scramble mutation:

Pick a subset of genes at random (not necessarily
consecutive)

Randomly rearrange the alleles in those positions

Crossover for Permutations
Order one crossover:

Choose an arbitrary part from the first parent, copy this part to the
first child

Copy the numbers that are not in the first part, to the first child:
 starting right from cut point of the copied part,
 using the order of the second parent and wrapping around at the end

Analogous for the second child, with parent roles reversed

Crossover for Permutations
Partially Mapped Crossover (PMX):

Choose random segment and copy it from P1

Starting from the first crossover point look for elements in that segment of P2
that have not been copied

For each of these i look in the offspring to see what element j has been copied in
its place from P1

Place i into the position occupied j in P2, since we know that we will not be
putting j there (as is already in offspring)

If the place occupied by j in P2 has already been filled in the offspring k, put i in
the position occupied by k in P2

Crossover for Permutations
Partially Mapped Crossover (PMX):

Having dealt with the elements from the crossover
segment, the rest of the offspring can be filled from P2.

Idea: maintain position

Order vs Position in
Permutations
Order, but not position of numbers is important in

problems such as the traveling salesman problem
(visiting all cities in a certain order)

Position, but not order of numbers is important in
problems such as allocating visitors in hotels to rooms
(visitors have to be allocated once to one room, but the
order of the allocation does not matter)

Evolutionary Strategies
Numerical optimization problems:

Given a function f from real numbers to a real number
Find coordinates at which f is maximized

Evolutionary Strategies
Main idea:

individuals consist of vectors of real numbers
(not binary)

Redefinitions of
selection
crossover
mutation

Operations executed in the order
crossover mutation selection→ →

ES: Selection
Not performed before mutation and crossover, but

after these operations
It is assumed mutation (& crossover) generate

individuals (where is population size)
(typically ≈ 7)

Deterministically eliminate worst individuals from
children only: (,)-ES escapes from local optima →

more easily
parents and children: (+)-ES doesn't forget →

good solutions (“elitist selection”)

(Notational convention)

ES: Basic Mutation
An individual is a vector

Mutate each xi by sampling a change from a normal
distribution:
 where

“sampled from”

Simple modification:
mutation rate for each xi

Major question:
How to set or ?

ES: Basic Mutation
An algorithm for setting global :

 Count the number Gs of successful
mutations
 Compute the ratio of successful mutations

ps = Gs / G

 Update strategy parameters according to

until termination

σ i={
σ i/ c if ps> 0 .2

σ i c if ps< 0 .2

σ i if ps=0 .2

]0.1,8.0[c

Improved fitness

“1/5 rule”

MAIN IDEA: make search more efficient
by increasing mutation rate if this seems safe

Increase mutation
rate as it appears better
solutions are far away

Basic (1+1) ES
Common use of the 1/5 rule

ES Mutation:
Strategy Parameters
An individual is a vector

or
where the are the standard deviations

Mutate strategy parameter(s) first
Order is important!

If the resulting child has high fitness, it is assumed
that:
quality of phenotype is good
quality of strategy parameters that led to this phenotype

is good

ES Mutation:
Strategy Parameters
Mutation of one strategy parameter

ES Mutation:
Strategy Parameters
Here is the mutation rate

 bigger: faster but more imprecise
 smaller: slower but more imprecise

Recommendation for setting :

ES Mutation:
Strategy Parameters

One parameter for each
individual

2 dimensional genotype

5 individuals

Line indicates points with equal fitness

ES Mutation:
Strategy Parameters

One parameter for each
dimension

2 dimensional genotype

5 individuals

ES Mutation:
Strategy Parameters
Mutation of all strategy parameters

Sample from normal distribution,
the same for all parameters

Update for this specific parameter

ES Mutation:
Strategy Parameters

An individual is a vector

where encode angles

Also here mutation can
be defined

Mathematical details
skipped

	Slide 34
	Handling constraints
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

